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Abstract

Over the last decade, a variety of external file formats
such as Parquet, ORC, Arrow, etc., have been developed
to store large volumes of relational data in the cloud.
As high-performance networking and storage devices are
used pervasively to process this data in frameworks like
Spark and Hadoop, we observe that none of the popular
file formats are capable of delivering data access rates
close to the hardware. Our analysis suggests that multi-
ple antiquated notions about the nature of I/O in a dis-
tributed setting, and the preference for the “storage effi-
ciency” over performance is the key reason for this gap.

In this paper we present Albis, a high-performance file
format for storing relational data on modern hardware.
Albis is built upon two key principles: (i) reduce the CPU
cost by keeping the data/metadata storage format simple;
(ii) use a binary API for an efficient object management
to avoid unnecessary object materialization. In our eval-
uation, we demonstrate that in micro-benchmarks Albis
delivers 1.9 − 21.4× faster bandwidths than other for-
mats. At the workload-level, Albis in Spark/SQL reduces
the runtimes of TPC-DS queries up to a margin of 3×.

1 Introduction

Relational data management and analysis is one of the
most popular data processing paradigms. Over the last
decade, many distributed relational data processing sys-
tems (RDPS) have been proposed [15, 53, 29, 38, 35,
24]. These systems routinely process vast quantities of
(semi-)structured relational data to generate valuable in-
sights [33]. As the volume and velocity of the data in-
crease, these systems are under constant pressure to de-
liver ever higher performance. One key factor that de-
termines the performance is the data access rate. How-
ever, unlike the classic relational database management
systems (RDBMS) which are jointly designed for op-
timal data storage and processing, modern cloud-based

Figure 1: Relational data processing stack in the cloud.

RDPS systems typically do not manage their storage.
They leverage a variety of external file formats to store
and access data. Figure 1 shows a typical RDPS stack in
the cloud. This modularity enables RDPS systems to ac-
cess data from a variety of sources in a diverse set of de-
ployments. Examples of these formats are Parquet [10],
ORC [9], Avro [6], Arrow [5], etc. These formats are
now even supported by the RDBMS solutions which add
Hadoop support [49, 41, 31]. Inevitably, the performance
of a file format plays an important role.

Historically, file formats have put the top priority as
the “storage efficiency”, and aim to reduce the amount
of I/O as much as possible because I/O operations are
considered slow. However, with the recent performance
advancements in storage and network devices, the fun-
damental notion of “a fast CPU and slow I/O devices”
is now antiquated [44, 40, 54]. Consequently, many as-
sumptions about the nature of storage in a distributed
setting are in need of revision (see Table 1). Yet, file
formats continue to build upon these antiquated assump-
tions without a systematic consideration for the perfor-
mance. As a result, only a fraction of raw hardware per-
formance is reflected in the performance of a file format.

In this paper, we re-visit the basic question of stor-
age and file formats for modern, cloud-scale relational
data processing systems. We first start by quantifying
the impact of modern networking and storage hardware
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Assumption Implications Still valid in a modern setup?
1. I/O operations are orders of
magnitude slower than the CPU

Use compression and encoding to re-
duce the amount of I/O required

No, with high-performance devices, the CPU is the new
performance bottleneck [54, 20]

2. Random, small I/O accesses
are slow

Use large block sizes to make large
sequential scans [30, 29]

No, modern NVMe devices have high-performance for
random, small accesses

3. Avoid remote data access Preserve locality by packing data in dis-
crete storage blocks [25]

No, fast I/O devices with network protocols (e.g.,
NVMeF) make remote storage as fast as local [26, 34]

4. Metadata lookups are slow Decrease the number of files and blocks
needed to store data [30]

No, high-performance distributed storage systems can
do millions of lookups per second [50]

5. The final row representation
is not known

Provide object/data-oriented API for
row and column data types

No, the final row/column representation is often known
(e.g., Spark UnsafeRow) and a binary API can be used

Table 1: Assumptions (1–2 are local, and 3–5 are distributed) and their implications on storing relational data.

on the performance of file formats. Our experiments lead
to three key findings. First, no popular file format we test
can deliver data access bandwidths close to what is pos-
sible on modern hardware. On our 100 Gbps setup, the
best performer delivers about 1⁄3rd of the bandwidth of the
networked storage. Secondly, the CPU is the new bottle-
neck in the data access pipeline. Even in the presence
of high-performance I/O hardware, file format develop-
ers continue to trade the CPU performance for “efficient”
I/O patterns. Although this decision made sense for disks
and 1 Gbps networks, today, this leads to the CPU be-
ing kept busy with (de)compressing, en/decoding, copy-
ing data, managing objects, etc., while trying to keep
up with incoming data rates. Lastly, at the distributed
systems level, strict adherence to locality, preference for
large sequential scans, penchant to decrease the number
of files/blocks, and poor object management in a man-
aged run-time result in a complex implementation with a
very high CPU cost and a poor “COST” score [37].

Based upon these findings, in this paper, we propose
Albis, a simple, high-performance file format for RDPS
systems. Albis is developed upon two key principles: (i)
reduce the CPU cost by keeping the data/metadata stor-
age format simple; (ii) use a binary API for an efficient
object management to avoid unnecessary object materi-
alization. These principles then also simplify the data/file
management in a distributed environment where Albis
stores schema, metadata, and data in separate files for an
easy evolution, and does not enforce a store like HDFS
to use local blocks. In essence, Albis’s top priority is to
deliver performance of the storage and network hardware
without too much intrusion from the software layer. Our
specific contributions in this paper are:

• Quantification of the performance of popular file for-
mats on modern hardware. To the best of our knowl-
edge, this is the first systematic performance evalua-
tion of file formats on 100 Gbps network and NVMe
devices. Often, such evaluations are muddied in the
description of the accompanying relational processing

system, which makes it hard to understand where the
performance bottlenecks in the system are.

• Revision of the long held CPU-I/O performance as-
sumptions in a distributed setting. Based upon these
revisions, we propose Albis, a high-performance file
format for relational data storage systems.

• Evaluation of Albis on modern hardware where we
demonstrate that it can deliver performance within
15% (85.5 Gbps) of the hardware. Beyond micro-
benchmarks, we also integrate Albis in Spark/SQL and
demonstrate its effectiveness with TPC-DS workload
acceleration where queries observe gains up to 3×.

2 File Formats in the Age of Fast I/O

The choice of a file format dictates how multi-
dimensional relational tables are stored in flat, one-
dimensional files. The initial influential work of column-
oriented databases have demonstrated the effectivness of
column storage for disks [51, 12]. This has led to the
development of a series of columnar file formats. The
most prominent of them are Apache Parquet [10], Op-
timized Row Columnar (ORC) [9], and Arrow [5]. All
of these columnar formats differ in their column/storage
encoding, storage efficiency, and granularity of index-
ing. Apart from providing a row-at-a-time API, all of
these formats also have a high-performance vector API
for column data. In this paper, we use the vector API for
evaluation. In contrast to column-storage, we also con-
sider two popular row-oriented formats. JSON [11] is a
simple data representation that encodes schema and data
together. JSON is widely supported due to its simplicity.
The other format is Avro [6] that decouples schema and
data presentation where both can evolve independently.

2.1 The Mismatch Assumptions

In this section, we re-visit the basic assumptions made
about the nature of I/O and what impact they have on the
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1 GbE 100 GbE Disk NVMe
Bandwidth 117 MB/s 12.5 GB/s 140 MB/s 3.1 GB/s
cycles/unit 38,400 360 10,957 495

Table 2: Bandwidths and cycles/unit margins for net-
working and storage devices. A unit for network is a
1,500 bytes packet, whereas for storage it is a 512 bytes
sector. Cycles/unit roughly denote the number of free
CPU cycles for every data unit for a 3 GHz core. As a
reference, a DRAM-access would be around 100 cycles.

file format design in the presence of modern hardware.
This discussion is summarized in Table 1.
1. I/O operations are orders of magnitude slower than
the CPU: During the last decade, we have witnessed the
rise of high-performance storage and networking devices
like 40 and 100 Gbps Ethernet, and NVMe storage. Once
the staple of high-performance computing clusters, these
devices and associated APIs can now be found in com-
modity cloud offerings from multiple vendors [3, 2, 1].
At the same time, the CPU performance improvements
have stalled due to various thermal and manufacturing
limits. Hence, the CPU’s margin for processing incom-
ing bytes has shrunk considerably [45, 21, 16, 54]. In
Table 2 we summarize the bandwidths for state-of-the-art
I/O devices from a decade ago and now. We also show
the cycles/unit metric as an estimate of the CPU bud-
get for every incoming unit of data. For the network,
the unit is a 1,500 bytes packet, and for storage it is a
512 bytes sector. For a 3 GHz core (ignoring the micro-
architectural artifacts), the number of cycles per second
is around 3× 109. The table shows that in comparison
to a decade ago, CPU cycle margins have shrunk by two
orders of magnitude.
2. Random, small I/O accesses are slow: Disk seeks
are slow and take ∼10s of milliseconds, a cost that can-
not be amortized easily for small accesses. Hence, disk-
based file formats advocate using large I/O segments,
typically a multiple of the underlying storage block, e.g.,
128 or 256 MB [30]. However, NVMe devices can de-
liver high bandwidth for random, small I/O patterns. In
our investigation (discussed in the next section), we find
that the continuing use of large I/O buffers is detrimental
to the cache behavior and performance. For example, on
a 16 core machine with a 128 MB buffer for each task,
the memory footprint of a workload would be 2 GB, a
much larger quantity than the modern cache sizes.
3. Avoid remote data access: Modern NVMe devices
can do 2-3 GB/s reads and 1-2 GB/s writes. At the
same time, the availability of high-performance networks
(40 and 100 Gbps) and efficient network protocols like
NMVe-over-Fabrics, means that the performance gap be-
tween a local flash and remote flash is negligible [26, 34].

Hence, various proposed modifications to block place-
ment strategies in Hadoop [25], and design decisions to
pack schema, data, and metadata in the same block to
avoid remote storage, can be relaxed.
4. Metadata lookups are slow: In any distributed stor-
age, the number of metadata lookups is directly propor-
tional to the number of blocks in a file. A lookup is
an RPC that took 100-1,000 µs over 1 Gbps networks.
This high cost has led to the decision to reduce the num-
ber of files (or blocks) by using complex block man-
agement strategies, type-specific encoding, packing data
and schema in packed blocks, which in essence trades
CPU for the I/O. However, modern storage solutions like
Apache Crail [8] and RAMCloud [42] can do millions of
metadata lookups/sec [50].
5. The final data representation is not known: File
formats often assume that the final data representation
in an RDPS engine is not known, and hence, a format
must materialize the raw objects when reading and writ-
ing data. This decision leads to unnecessary serialization
and object allocation, which hampers the performance in
a managed run-time environment like Java.

2.2 Putting it Together: Performance
In this section, we quantify the cumulative effect of the
aforementioned assumptions on the read performance of
file formats on modern hardware. For this experiment,
we read and materialize values from the store sales

table (the largest table) from the TPC-DS (scale=100)
dataset. The table contains 23 columns, which consist
of 10 integers, 1 long, and 12 decimal values. The input
table is stored in the HDFS file system (v2.7) in Parquet
(v1.8), ORC (v1.4), Arrow (v0.8), Avro (v1.7), and
JSON formats. The goal of the experiment is to mea-
sure how fast we can materialize the values from a re-
mote storage. The experiment is run between 2 machines
(with dual Xeon E5-2690, 16 cores) connected via a 100
Gbps network. One machine is used to run the HDFS
namenode and a datanode. This machine also contains
4 enterprise-grade NVMe cards, with a cumulative band-
width of 12.4 GB/sec. The other machine runs the bench-
marking code1 on all 16 cores in parallel.

Figure 2 shows our findings. Here, the y-axis shows
the effective goodput calculated by dividing the total in-
coming data size by the runtime. Notice that the incom-
ing data size is different from the file size, which depends
upon the file format used. We cannot use the file size for
the bandwidth calculation because formats such as JSON
use text encoding with interleaved schemas, thus making
their file sizes up to 10× larger than the actual data size.
In order to measure the actual data content, we count how

1The benchmarking code is open-sourced at https://github.

com/animeshtrivedi/fileformat-benchmarks.
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Figure 2: Reading bandwidths for various file formats.

many integers, longs, and doubles the table contains, ex-
cluding the null values. We use this as the reference data
point for the goodput measurements. We also show the
data ingestion bandwidth of Spark/SQL [15] (as spark+)
when the data is generated on the fly. The solid line rep-
resents the HDFS read bandwidth (74.9 Gbps) from the
remote NVMe devices2.

There are three key results from our experiment. First,
as shown in Figure 2, none of the file formats that we
test delivers bandwidth close to the storage performance.
There is almost an order of magnitude performance gap
between the HDFS (74.9 Gbps) and JSON (2.8 Gbps)
and Avro (6.5 Gbps) performances. Columnar formats
with their optimized vector API perform better. The best
performer is Arrow, which delivers 40.2% of the HDFS
bandwidth. Interestingly, Arrow is not for disks, but for
in-memory columnar data presentation. Its performance
only supports our case that with modern storage and
networking hardware, file formats need to take a more
“In-Memory”-ish approach to storage. In the same fig-
ure, we also show that in isolation from the storage/file
formats, Spark/SQL can materialize store sales rows
from raw integers, longs, and doubles at the rate of 97.3
Gbps. Hence, we conclude that file formats are a major
performance bottleneck for accessing data at high rates.

Secondly, the performance of these file formats are
CPU limited, an observation also made by others [20].
When reading the data, all 16 cores are 100% occu-
pied executing the thick software stack that consists of
kernel code, HDFS-client code, data copies, encoding,
(de)serialization, and object management routines. In
Table 3 we present further breakdown of the performance
(1st row) with required instructions per row (2nd row)
and cache misses per row (3rd row) for Parquet and ORC
file formats when varying their block sizes. As shown,
the use of large blocks (256 MB and 512 MB) always
leads to poor performance. The key reason for the perfor-
mance loss is the increased number of cache misses that

2Even though this is not 100 Gbps, it is the same bandwidth that
HDFS can serve locally from NVMe devices. Hence, the assumption
about the equality of local and remote performance holds.

512M 256M 128M 64M 32M

Goodput Parq. 7.3 9.5 12.5 12.8 12.1
(in Gbps) ORC 13.6 17.5 19.9 20.2 20.1
Instructions/ Parq. 6.6K 6.7K 6.6K 6.6K 6.6K
row ORC 5.0K 4.9K 4.9K 4.8K 4.8K
Cache misses/ Parq. 11.0 10.6 9.2 7.1 6.5
row ORC 7.8 5.5 4.6 4.4 4.1

Table 3: Goodputs, instructions/row, and cache
misses/row for Parquet (Parq.) and ORC with varying
block sizes on a 16-core Xeon machine.

leads to stalled CPU cycles. As we decrease the block
size from 512 to 32 MB, the performance increases up to
128 MB, though the number of cache misses continues
to decrease. At smaller block sizes (128 – 32 MB), the
performance does not further improve because it is bot-
tlenecked by the large number of instructions/row (re-
mains almost constant as shown in the 2nd row) that a
CPU needs to execute. In further experiments, we use a
128 MB block size as recommended in the literature.

Thirdly, these inefficiencies are scattered throughout
the software stack of file formats, and require a fresh and
holistic approach in order to be fixed.
Summary: We have demonstrated that despite orders
of magnitude performance improvements in networked-
storage performance, modern file formats fail to deliver
this performance to data processing systems. The key
reason for this inefficiency is the belief in the legacy as-
sumptions where CPU cycles are still traded off for I/O
performance, which is not necessary anymore. Having
shown the motivation for our choices, in the next section
we present Albis, a high-performance file format.

3 Design of Albis File Format

Albis is a file format to store and process relational tab-
ular data for read-heavy analytic workloads in a dis-
tributed setting. It supports all the primitive fixed (int,
timestamp, decimal, double, etc.) and variable
(varchar or byte[]) data types with simple and nested
schemas. A nested schema is flattened over the column
names and data is stored in the schema leaves. Albis’s
design is based upon the following choices:

• No compression or encoding: Albis decreases the
CPU pressure by storing data in simple binary blobs
without any encoding or compression. This decision
trades storage space for better performance.

• Remove unnecessary object materialization by pro-
viding a binary API: The data remains in the binary
format unless explicitly called for materialization. A
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Figure 3: Table partitioning logic of Albis and corre-
sponding file and directory layout on the file system.

reader can access the binary data blob for data transfor-
mation from Albis to another format (such as Spark’s
UnsafeRow representation) without materializing the
data. This design choice helps to reduce the number of
objects. A binary API is possible because the row data
is not group compressed or encoded which requires the
complete group to be decoded to materialize values.

• Keep the metadata/data management simple: Albis
stores schema, data, and metadata in separate files with
certain conventions on file and directory names. This
setup helps to avoid complex inter-weaving of data,
schema, and metadata found in other file formats. Due
to the simple data/metadata management logic, Albis’s
I/O path is light-weight and fast.

In order to distribute storage and processing, Albis
partitions a table horizontally and vertically as shown in
Figure 3. The vertical partitioning (configurable) splits
columns into column-groups (CGs). At the one extreme,
if each column is stored in a separate column group,
Albis mimics a column store. On the other hand, if all
columns are stored together in a single column group, it
resembles a row store. In essence, the format is inspired
by the DSM [23] model without mirroring columns in
column groups. Horizontal partitioning is the same as
sharding the table along the rows and storing them into
multiple row-groups (RGs). A typical row group is con-
figurable either based on the number of rows or the size
(typically a few GBs). The number and ordering of the
row and column groups are inferred from their names as
shown in Figure 3. Albis does not maintain any explicit
indexes. Row data in various column groups are matched
together implicitly by their position in the data file. The
data, metadata, and file management and naming conven-
tion of Albis is similar to BigTable [22]. In the follow-
ing sections, we discuss the storage format, read/write
paths, support for data/schema evolution, and concerns
with distributed data processing systems in detail. Ta-
ble 4 shows the abridged Albis API.

Figure 4: Albis row storage format.

3.1 Row Storage Format
After splitting the table along multiple CGs, each CG
can be thought of as a table with its own schema and
data. Row data from a column group is stored con-
tinuously, one after another, in a file. The Albis row
format consists of four sections: a size counter, a null
bitmap, a fixed-length and a variable-length section as
shown in Figure 4. For a given schema, the number of
fields determines the bitmap size in bytes. For exam-
ple, a 23 columns schema (like TPC-DS store sales)
takes 3 bytes for the null bitmap. The fixed-length area
is where data for fixed-length columns are stored in situ.
A variable-length column data is stored in the variable-
length area, and its offset and size is encoded as an 8-byte
long and stored in the fixed area. With this setting, for a
given schema, Albis calculates the fixed-length section
size (that stays fixed, hence the name) by summing up
the size of the fixed-type fields and 8×number of vari-
able fields. For example, a schema of <int, char,

byte[], double, byte[]> (as shown in the figure)
takes one byte for bitmap, and 29 (= 4 + 1 + 8 + 8 +
8) bytes for the fixed segment. The row encoding is then
prefixed by the total size of the row, including its variable
segment. For a fixed-length schema (contains only fixed-
length fields), Albis optimizes the row format by eschew-
ing the size prefix as all rows are of the fixed, same size.

3.2 Writing Row Data
A writer application defines a schema and the column
grouping configuration by allocating AlbisSchema and
AlbisColumn objects. In the default case, all columns
are stored together in a row-major format. The writer
application then allocates an AlbisWriter object from
the schema object. The writer object is responsible for
buffering and formatting row data according to the stor-
age format as described previously. Internally, the writer
object manages parallel write streams to multiple CG
locations, while counting the size. Once a RG size is
reached, the current writers are closed, and a new set
of writers in a new RG directory are allocated. Data is
written and read in the multiple of segments. A segment
is a unit of I/O buffering and metadata generation (de-
fault: 1 MB). The segment metadata includes the min-
imum and maximum values (if applicable), distribution
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Class Functions Action

AlbisFileFormat
reGroup(Schema, Path, Schema, Path) re-groups the schema in the given path location
reBalance(Path) re-balances the data in the given path location

AlbisColumn make(String, Type, ...) makes a column with a name and type
AlbisColGroup make(AlbisColumn[]) makes a column group from a given list of columns

AlbisSchema

getReader(Path, Filter[], AlbisColumn[]) gets a reader for a given location, projection, and filter
getWriter(Path) gets a writer to a given location
makeSchema(ColumnGroup[]) builds a schema with a given list of CGs

AlbisWriter
setValue(Int, Value) sets a value (can be null) for a given column index
nextRow() marks the current row done, and moves the pointer

AlbisReader

hasMore() and next() implements the Scala Iterator abstraction for rows
getValue(Int) gets the value (can be null) for a given column index
getBinaryRow() returns a byte[] with the encoded row

Table 4: Abridged Albis API. Apart from row-by-row, Albis also supports a vector reading interface.

of data (e.g., sorted or not), number of rows, padding in-
formation, and offset in the data file, etc. The segment
metadata is used for implementing filters.

3.3 Reading Row Data

A reader application first reads the schema from the top-
level directory and scans the directory paths to identify
row and column groups. The reader then allocates an
AlbisReader object from the schema, which internally
reads in parallel from all column groups to construct the
complete row data. AlbisReader implements the Iter-
ator abstraction where the reader application can check
if there are more rows in the reader and extract values.
The reader object reads and processes a segment’s worth
of data from all column groups in parallel, and keeps the
row index between them in sync. An AlbisReader ob-
ject also supports a binary API where row-encoded data
can be returned as a byte[] to the application.
Projection: AlbisReader takes a list of AlbisColumns
that defines a projection. Internally, projection is im-
plemented simply as re-ordering of the column indexes
where certain column indexes are skipped. Naturally, the
performance of the projection depends upon the column
grouping. In the row-major configuration, Albis cannot
avoid reading unwanted data. However, if the projected
columns are grouped together, Albis only reads data files
from the selected column group, thus skipping unwanted
data. As we will show in Section 4.1, the implementation
of projection is highly competitive with other formats.
Filtering: Albis implements two levels of filtering. The
first-level of filtering happens at the segment granularity.
If a filter condition is not met by the metadata, the seg-
ment reading is skipped immediately. For example, if a
segment metadata contains the max value of 100 for an
integer column, and a filter asks for values greater than
500, the segment is skipped. However, if the condition is
not specific enough, then the rows are checked one-by-

one, and only valid rows satisfying all filter conditions
are returned. Currently, Albis supports null checks and
ordinal filters (less than, greater than, equal to) with com-
binations of logical (NOT, AND and OR) operators.

3.4 Data and Schema Evolution in Albis

As described so far, the name and location of a data file
plays an important role to support data and schema evo-
lution in Albis. We now describe this in detail:
Adding Rows: Adding another row is trivial. A writer
adds another row group in the directory and writes its
data out. Appending to an existing row group is also pos-
sible on append-only file systems like HadoopFS. How-
ever, while adding another row, the writer cannot alter
the column grouping configuration.
Deleting Rows: Deleting rows in-place is not supported
as the underlying file system (HDFS) is append-only.
Adding Columns: Adding new columns is one of the
most frequent operations in analytic. Adding a column
at the end of the schema involves creating a column
group directory (with associated data and metadata files).
The ordering of row data in the newly added column
is matched with the existing data, and missing row en-
tries are marked null. Using this strategy, more than one
column (as a CG) can be added at a time as well. The old
schema file is read, and written again (after deleting the
old one) with the updated schema.
Deleting Columns: A column delete operation in Albis
falls in one of the two categories. The column(s) to be
deleted is (are) either (i) stored as a separate CG; or (ii)
stored with other columns. In the first case, the deletion
operation is simple. The CG directory is deleted, and
the schema is updated as mentioned previously. In the
latter case, there are two ways Albis deletes columns.
A light-weight deletion operation “marks” the column
as deleted and updates the schema. The column is only
marked as deleted, but the column is not removed from

620    2018 USENIX Annual Technical Conference USENIX Association



the schema because the column data is still stored in the
storage. In order to skip the marked column data, an
AlbisReader needs to know the type(s) of the deleted
column(s). In contrast, a heavy-weight delete opera-
tion emulates a read-modify-write cycle, where the CG
is read, modified, and written out again.
Maintenance Operations: Apart from the aforemen-
tioned operations, Albis supports two maintenance op-
erations: re-grouping and re-balancing. Re-grouping is
for re-configuring the column grouping. For example,
due to the evolution in the workload it might be neces-
sary to split (or merge) a CG into multiple CGs for a
faster filter or projection processing. Re-balancing refers
to re-distributing the data between RGs. A RG is the
unit of processing for Albis tables in a distributed set-
ting. Adding and removing column and row data can
lead to a situation where data between row-groups is not
balanced. This data imbalance will lead to imbalanced
compute jobs. The Re-balancing operation reads the cur-
rent data and re-balances the data distribution in the row
groups. While executing the re-balancing, it is possible
to increase the number of row groups to increase the par-
allelism in the system. Re-grouping can be executed at
the same time as well. These operations are slow and
we expect them to be executed once-in-a-while. Even
though column adding and deleting is one of the frequent
operations, a complete re-balancing is only required if
the added columns/rows contain highly uneven values.

3.5 Distributed Processing Concerns

How does an RDPS system process input Albis files?
RDPS frameworks like Spark/SQL divide work among
the workers using the size as a criteria. At a first glance,
a segment seems to be a perfect fit for providing equal
sized work items for workers. For a static table, seg-
ments can be used as the quantum of processing. How-
ever, as a new column is added, often as a result of dis-
tributed processing, it is critical in what order the rows in
the new column are written because indexes are implic-
itly encoded with the data position in a file. For exam-
ple, imagine a table with two segments in a single row-
group. Now, another column is added to this table using
two Spark/SQL workers, each processing one segment.
As there are no ordering guarantees between tasks, and
each task in the data-parallel paradigm gets its own file
to write, it is possible that the first task gets the second
segment, but the first new column file name. This mix-up
destroys the row ordering when enumerating files based
on their names. However, if the whole row-group is pro-
cessed only by a single task, the newly added “single”
column file is ensured to have the same ordering as the
current row file (including all its segments). Thus, an
Albis row-group is the unit of processing for a distributed

RDPS system. A single task is responsible for process-
ing, adding and deleting columns and rows within a sin-
gle row group while maintaining the implicit ordering
variant of the data. As previously discussed, if neces-
sary, the data can be re-balanced to increase the num-
ber of row-groups, hence, parallelism in the system. The
schema file updates are expected to take place on a cen-
tralized node like the Spark driver.
Which column grouping to use? The recommended
column grouping setting depends upon the workload.
Systems like H2O [14], etc., can change the storage for-
mat dynamically based upon the workload. We consider
this work beyond the current scope. However, we expect
that Albis can help in this process by providing meaning-
ful insights about accesses and I/O patterns.

4 Evaluation

Albis is implemented in about 4k lines of Scala/Java code
for Java 8. We evaluate the performance of Albis on a 4-
node cluster each containing dual Xeon E5-2690 CPUs,
128GB of DDR3 DRAM, 4 enterprise-grade NVMe de-
vices, connected via a 100 Gbps link, running Ubuntu
16.04. All numbers reported here are the average of 3
runs. We attempt to answer three fundamental questions:

• First, does Albis deliver data access rates close to the
modern networking and storage devices? Using a set
of micro-benchmarks over HDFS on 100 Gbps net-
work and NVMe devices we demonstrate that Albis
delivers read bandwidths up to 59.9 Gbps, showing
a gain of 1.9 − 21.4× over other file formats (Sec-
tion 4.1). With Apache Crail (instead of HDFS), Albis
delivers bandwidth of 85.5 Gbps from NVMe devices.

• Secondly, does Albis accelerate the performance of
data analytic workloads? To demonstrate the effec-
tiveness of Albis and its API, we have integrated it in
Spark/SQL, and demonstrate an up to 3× reduction in
query runtimes. The overall TPC-DS runtime is also
decreased by 25.4% (Section 4.2).

• Lastly, what is the cost of design trade-offs of Albis,
namely the cost of eschewing compression and in-
creased look-up cost in a distributed system? In our
evaluation, Albis increases the storage cost by a mar-
gin of 1.3− 2.7× (based on the compression choice),
but does not increase the load for extra block lookups.
In exchange, it delivers performance improvements by
a margin of 3.4−7.2× (Section 4.3).

4.1 Micro-benchmarks
In this section, we evaluate the performance of Albis,
through a series of micro-benchmarks. We focus on the
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Figure 5: (a) Bandwidth vs. core scaling; (b) Effect of data type on performance; (c) Projectivity performance.

read because the write performance of all file formats are
bottlenecked by the HDFS write bandwidth (∼20 Gbps).

Read performance: We start by revisiting the key ex-
periment from the beginning of the paper. Here, in Fig-
ure 5a we show the performance of Albis with respect to
other file formats for reading the store sales data. The
x-axis shows the number of cores and the y-axis shows
the data goodput performance. As shown, in comparison
to other data formats, Albis delivers 1.9 (vs. Arrow) –
21.4× (vs. JSON) better read performance for reading
the store sales table. The performance gains of Albis
can be traced down to its superior instruction utilization
(due to its light-weight software stack), and cache profile.
Table 5 shows the CPU profile of Albis against Parquet,
ORC, and Arrow. As can be seen, Albis takes 1.2−4.1×
less instructions, and exhibits 1.5 − 3.0× fewer cache
misses per row. The peak data rate is at 59.9 Gbps, which
is within 80% of the HDFS bandwidth. The gap between
the HDFS performance and Albis is due to the parsing of
schema and materialization of the data. For the sake of
brevity, in the following sections we focus our effort on
best performing formats, namely Parquet and ORC, for
the performance evaluation. Arrow does not have native
filter and projection capabilities.

Effect of schema and data types: We now focus our
effort to quantify what effect a data type has on the read
performance. We choose integers, longs, doubles, and
arrays of byte types. For this benchmark, we store 10 bil-
lion items of each type. For the array, we randomly gen-
erate an array in the range of (1–1024) bytes. Figure 5b
shows our results. The key result from this experiment
is that Albis’s performance is very close to the expected
results. The expected result is calculated as what fraction
of incoming data is TPC-DS data. As discussed in Sec-
tion 3.1, each row contains an overhead of the bitmap.
For a single column schema that we are testing, it takes 1
byte for the bitmap. Hence, for integers we expect 4/5

th of
the HDFS read performance. In our experiments, the in-
teger performance is 52.6 Gbps which is within 87.8% of
the expected performance (59.9 Gbps). Other types also
follow the same pattern. The double values are slower
to materialize than longs. We are not sure about the

Parquet ORC Arrow Albis
Instructions/row 6.6K 4.9K 1.9K 1.6K
Cache-misses/row 9.2 4.6 5.1 3.0
Nanosecs/row 105.3 63.9 31.2 20.8

Table 5: Micro-architectual analysis for Parquet, ORC,
Arrow, and Albis on a 16-core Xeon machine.

cause of this behavior. The byte array schema delivers
bandwidth very close to the HDFS read bandwidth as the
bitmap overhead is amortized. With arrays, Albis deliv-
ers 72.5 Gbps bandwidth. We have only shown the per-
formance of primitive types as higher-level types such as
timestamps, decimal, or date are often encoded into
the lower-level primitive types, and their materialization
is highly implementation-dependent.

Projection performance: A columnar-format is a
natural fit when performing a projection operation. A
similar operation in a row-oriented format requires a
level of redirection to materialize the values while leav-
ing the unwanted data behind. However, a distinction
must be made between a true column-oriented and PAX-
alike format (e.g., Parquet). The PAX-encoding does not
change the I/O pattern and amount of data read from a
file system. It only helps to reduce the amount of work
required (i.e., mini-joins) to materialize the projected
columns. Albis’s efficiency in projection depends upon
the column grouping configuration. With a single col-
umn group, Albis is essentially a row store. Hence, the
complete row data is read in, but only desired columns
are materialized. To evaluate the projection performance,
we generated a dataset with 100 integer columns and 100
million rows (total size: 40 GB). This dataset is then
read in with a variable projectivity, choosing k out of 100
columns for k% projectivity. Figure 5c shows the projec-
tivity (x-axis) and the goodput (y-axis). As shown, Albis
(as a row store) always outperforms Parquet and ORC af-
ter 30% projectivity. It is only slower than ORC for 10%
and 20% projectivity by a margin of 23.5% and 2.7%, re-
spectively. We exercise caution with results as the superi-
ority of row versus column format is a contentious topic,
and gains of one over the other come from a variety of
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features that go beyond just micro-benchmarks [12].
Selectivity performance: In a real-world workload,

RDPS systems often have predicates on column values.
As all file formats maintain metadata about columns,
they help the RDPS systems to pre-filter the input rows.
However, it must be noted that often, filters are “hints”
to file formats. A format is not expected strictly to re-
turn rows that satisfy the filters. Parquet, ORC, and Albis
all maintain segment-level metadata that can be used to
completely eliminate reading the segment. The perfor-
mance saving depends upon the segment size. ORC also
maintains metadata per 10k rows that allows it to do an-
other level of filtering. In contrast, Albis supports strict
filtering of values and hence, it avoids pushing unwanted
rows into the processing pipeline. We evaluate selectivity
performance on the same 100 integer column table used
in the projection. The first column of the table contains
integers between 0 and 100. We execute a simple SQL
query “select(*) from table where col0 <= k”, where k
varies from 1 to 100, to select k% of input rows. Our re-
sults demonstrate similar gains (not shown) as the projec-
tion performance. Albis outperforms Parquet and ORC
by a margin of 1.6−2.4×.

4.2 Workload-level Performance

For workload-level experiments, we have integrated
Albis support into Spark/SQL [15] (v2.2) and evalu-
ate its performance for an EquiJoin and the full TPC-DS
query set. Naturally, input and output is only one aspect
of a workload, and gains solely from a fast format are
bounded by the CPU-I/O balance of the workload.

Spark/SQL data ingestion overheads: Inte-
gration into Spark/SQL entails converting in-
coming row data into Spark-specific format (the
Iterator[InternalRow] abstraction). We start
by quantifying what fraction of performance is lost
due to framework-related overheads [54], which, of
course, varies with the choice of the SQL framework.
In Figure 6a, we show the read bandwidths for the
three biggest tables in the TPC-DS dataset for ORC,

Parquet, and Albis3. In each bar, we also show a dark
bar that represents the performance observed at the
Spark/SQL level. In general, from one third up to half
of the performance can be lost due to framework-related
overheads. The table web sales performs the best with
89.2% of Parquet bandwidth delivered. However, it can
be observed the other way around as well because the
Parquet bandwidth is so low, hence, further overheads
from the framework do not deteriorate it further.

Effect of the Binary API: While measuring the Spark
ingestion rate, we also measure the number of live ob-
jects that the Java heap manages per second while run-
ning the experiment. For Albis we use two modes to ma-
terialize Spark’s UnsafeRow either using the binary API
or not. In our evaluation we find (not shown) that even
without using the binary API, Albis (260.4K objs/sec) is
better than Parquet (490.5K objs/sec) and ORC (266.4K
objs/sec). The use of binary API futher improves Albis’s
performance by 4.3% to 249.2K objs/sec.

EquiJoin performance: Our first SQL benchmark is
an EquiJoin operation, which is implemented as a Sort-
Merge join in Spark/SQL. For this experiment, we gen-
erate two tables with a <int,byte[]> schema and 32
million rows each. The array size varies between 1 and
2kB. The total data set is around 64GB in two tables. The
join operation joins on the int column, and then gener-
ates the checksum column for merged byte[] columns,
which is written out. Figure 6b shows our results. The
figure shows the runtime splits (y-axis) for the 4 stages
of the join operation (reading in, mapping to partitions,
sorting and joining partitions, and then the final write
out) for Parquet, ORC, and Albis. As shown, Albis helps
to reduce the read (7.1 sec for Albis) and write (1.7 sec
for Albis) stages by more than 2×. Naturally, a file for-
mat does not improve the performance of the map and
join stages, which remain constant for all three file for-
mats. Overall, Albis improves the query run-time by
35.1% and 29.8% over ORC and Parquet, respectively.

TPC-DS performance: Lastly, we run the TPC-DS
query set on the three file formats with the scaling factor

3Spark/SQL does not support the Arrow format yet (v2.2).
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None Snappy Gzip zlib

Parquet 58.6 GB 44.3 GB 33.8 GB N/A
12.5 Gbps 9.4 Gbps 8.3 Gbps -

ORC 72.0 GB 47.6 GB N/A 36.8 GB
19.1 Gbps 17.8 Gbps - 13.0 Gbps

Albis 94.5 GB N/A N/A N/A
59.9 Gbps - - -

Table 6: TPC-DS dataset sizes and performance.

of 100. We choose the factor 100 as it is the largest fac-
tor that we can run while keeping the shuffle data in the
memory to avoid Spark’s shuffle-related overheads. Fig-
ure 6c shows our results. On the y-axis, the figure shows
the fraction of queries as CDF and on the x-axis it shows
percentage performance gains for Albis in comparison
to Parquet and ORC formats. There are two main ob-
servations here. First, for more than half of the queries,
the performance gains are less than 13.8% (ORC) and
21.3% (Parquet). For 6 queries on ORC (only 1 on Par-
quet), the gains are even negative, however, the loss is
small (−5.6%). Second, the last six queries on both file
formats see more than a 50% improvement in run-times.
The run-time of the query 28, which is the query with
most gains, is improved by a margin of 2.3× and 3.0×
for ORC and Parquet, respectively. Gains are not uni-
formly distributed among all queries because they de-
pend upon what fraction of the query time is I/O bounded
and what is CPU bounded (including framework related
overheads). The run-times of the full TPC-DS suit with
all queries is 1,850.1 sec (Parquet), 1,723.4 sec (ORC)
and 1,379.2 sec (Albis), representing a gain of 25.4%
(over Parquet) and 19.9% (over ORC).

4.3 Efficiency of Albis
The cost of compression: With its sole focus on perfor-
mance, Albis does not use any compression or encoding
to reduce the data set size. This design choice means
that Albis file sizes are larger than other file formats.
In Table 6, we show the TPC-DS dataset (scale=100)
sizes with compression options available on Parquet and
ORC. As calculated from the table, due to highly efficient
type-specific encoding (e.g. RLE for integers), even un-
compressed Parquet and ORC datasets are 23.8−37.9%
smaller than Albis’s. With compression, the gap widens
to 64.2%. With the current market prices, the increased
space costs 0.5$/GB on NVMe devices. However, the
compressed dataset sizes also lead to significant perfor-
mance loss when reading the dataset (also shown in the
table). As we have shown in Section 2, the reading
benchmarks are CPU bounded even without compres-
sion. Hence, adding additional routines to decompress
incoming data only steals cycles from an already sat-
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Figure 7: Albis performance on Crail with NVMeF.

urated CPU. In comparison to compressed bandwidths,
Albis delivers 3.4− 7.2× higher bandwidths. One po-
tential avenue to recover the lost storage efficiency is to
leverage advanced hardware-accelerated features like de-
duplication and block compression further down the stor-
age stack. However, we have not explored this avenue in
detail yet.

Load on the distributed system: One concern with
the increased number of files and the storage capacity
of data sets is that they increase RPC pressure on the
namenode. The number of RPCs to the namenode de-
pends upon the number of files and blocks within a file.
With an HDFS block size of 128 MB, the most efficient
dataset from TPC-DS takes 271 blocks (33.8 GB with
Parquet and gzip). In comparison, Albis’s dataset takes
756 blocks. The lookup cost increase for hundreds of
blocks is marginal for HDFS. Nonetheless, we are aware
of the fact that these factors will change with the scale.

Delivering 100 Gbps bandwidth: For our final ex-
periment, we try to answer the question what it would
take to deliver 100 Gbps bandwidth for Albis. Certainly,
the first bottleneck is to improve the base storage layer
performance. The second factor is to improve the data
density. For example, the store sales table on Albis
has the data density of 93.9% (out of 100 bytes read
from the file system). On top of this, the effective band-
width on 100 Gbps link is 98.8 Gbps, that gives us the
upper bounds for the performance at 92.8 Gbps that we
hope to achieve with the Albis store sales table on a
100 Gbps link. To test the peak performance, we port
Albis to Apache Crail with its NVMeF tier [8, 52]. Crail
is an Apache project that integrates high-performance
network (RDMA, DPDK) and storage (NVMeF, SPDK)
stacks in the Apache data processing ecosystem. The
peak bandwidth of Crail from NVMe devices is 97.8
Gbps [46]. Figure 7 shows our results. In the left half
of the figure it shows the scaling performance of Albis
on Crail from 1 core performance (8.9 Gbps ) to 16 cores
(85.5 Gbps). In comparison, the right half of the figure
shows the performance of HDFS/NVMe at 59.9 Gbps
and Crail/NVMe at 85.5 Gbps. The last bar shows the
performance of Albis if the benchmark does not materi-
alize Java object values. In this configuration, Albis on
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Crail delivers 91.3 Gbps, which is within 98.4% of the
peak expected performance of 92.7 Gbps.

5 Related Work

Storage Formats in Databases: N-ary Storage Model
(NSM) stores data records contiguously in a disk page,
and uses a record offset table at the end of the page [47].
Decomposition Storage Model (DSM) [23] proposes to
split an n-column relation into n sub-relations that can
be stored independently on a disk. NSM is consid-
ered good for transactions, whereas, DSM is consid-
ered suitable for selection and projection-heavy analyt-
ical workloads. A series of papers have discussed the
effect of NSM and DSM formats on the CPU efficiency
and query execution [27, 55, 12]. Naturally, there is
no one size that fits all. Ailamaki et al. [13] propose
the Partition Attributes Across (PAX) format that com-
bines the benefits of these two for a superior cache per-
formance. The Fractured Mirrors design proposes main-
taining both NSM and DSM formats on different copies
of data [48]. Jindal et al. propose the Trojan data layout
that does workload-driven optimizations for data layouts
within replicas [32]. The seminal work from Abadi et al.
demonstrates that a column-storage must be augmented
by a right query processing strategy with late materializa-
tion, batch processing, etc., for performance gains [12].
Various state of the art database systems have been pro-
posed that take advantage of these strategies [51, 19]. In
comparison so far, the focus of Albis has been on a light-
weight file format that can faithfully reflect the perfor-
mance of the storage and networking hardware.
File Formats in the Cloud: Many parts of the data for-
mat research from databases have found its way into
commodity, data-parallel computing systems as well.
Google has introduced SSTable, an on-disk binary file
format to store simple immutable key-value strings [22].
It is one of the first external file formats used in a large-
scale table storage system. RCFile [28] is an early at-
tempt to build a columnar store on HDFS. RCFiles do
not support schema evolution and have inefficient I/O
patterns for MapReduce workloads. To overcome these
limitations, Floratou et al. propose the binary columnar-
storage CIF format for HDFS [25]. However, in order
to maintain data locality, they require a new data place-
ment policy in HDFS. Hadoop-specific column-storage
issues like column placement and locality are discussed
in detail by [30, 25]. The more popular file formats like
Parquet [10] (uses Dremel’s column encoding [38]) and
ORC [9], etc., are based on the PAX format. Albis’s
column grouping and row-major storage format match
closely with Yahoo’s Zebra [4, 39]. However, Zebra
does not support filter pushdown or statistics like Albis.
Apache CarbonData is an indexed columnar data format

for fast analytics on big data platforms [7]. It shares sim-
ilarities with the Arrow/Parquet project. However, due to
its intricate dependencies on Spark, we could not evalu-
ate it independently. Historically, the priorities of these
file formats have been I/O efficiency (by trading CPU
cycles) and then performance, in that order. However, as
we have demonstrated in this paper, the performance of
these file formats are in dire need of revision.
High-Performance Hardware: Recently, there has
been a lot of interest in integrating high-performance
hardware into data processing systems [17, 18]. Of-
ten, the potential performance gains from modern hard-
ware are overshadowed by the thick software/CPU stack
that is built while holding the decades old I/O assump-
tions [40, 54]. This pathology manifests itself as “sys-
tem being CPU-bounded”, even for many I/O-bound
jobs [20, 43]. A natural response to this situation is to
add more resources, which leads to a significant loss in
efficiency [37]. In this work, we have shown that by re-
evaluating the fundamental assumptions about the nature
of I/O and CPU performances, we can build efficient and
fast systems - a sentiment echoed by the OS designers as
well [45]. Recently, Databricks has also designed its op-
timized caching format after finding out about the inade-
quate performance of file formats on NVMe devices [36].
However, details of the format are not public.

6 Conclusion

The availability of high-performance network and stor-
age hardware has fundamentally altered the performance
balance between the CPU and I/O devices. Yet, many
assumptions about the nature of I/O are still rooted in
the hardware of the 1990s. In this paper, we have in-
vestigated one manifestation of this situation in the per-
formance of external file formats. Our investigation on
100 Gbps network and NVMe devices reveals that due
to the excessive CPU and software involvement in the
data access path, none of the file formats delivered per-
formance close to what is possible on modern hardware.
Often, CPU cycles are traded for storage efficiency. We
have presented Albis, a light-weight, high-performance
file format. The key insight in the design of Albis is
that by foregoing the assumptions and re-evaluating the
CPU-I/O work division in the file format, it is possible
to build a high-performance balanced system. In the
process of designing Albis, we have also presented an
extensive evaluation of popular file formats on modern
high-performance hardware. We demonstrate that Albis
delivers performance gains in the order of 1.9− 21.4×;
superior cache and instruction profile; and its integration
in Spark/SQL shows TPC-DS queries acceleration up to
a margin of 3×. Encouraged by this result, we are explor-
ing applicability of Albis with multiple frameworks.
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